Association studies on dilated cardiomyopathy

Eric Villard Unit INSERM 1166 Sorbonne University Utrecht, Feb 14th 2019

Instituts thématiques

Institut national de la santé et de la recherche médicale

Dilated Cardiomyopathy (DCM)

...but no clear physiopathology

Association Studies (GWAS)

GWAS principle

Compare allele frequency of millions of human polymorphisms between cases and controls for a given disease.

If a polymorphism or an haplotype is statistically at different frequency it suggested that the loci is implicated in the disease

Results are plotted as p-value for association vs genomic position, associated regions appears at peaks on the so-called Manhattan plot

Candidate gene in the regions are subjected to in silico/experimental analysis to identify pathways, mechanisms and drug targets

Trait	Gene with GWAS hits	Known or candidate drug
Type 2 Diabetes	SLC30A8/KCNJ11	ZnT-8 antagonists/Glyburide
Rheumatoid Arthritis	PADI4/IL6R	BB-Cl-amidine/Tocilizumab
Ankylosing Spondylitis(AS)	TNFR1/PTGER4/TYK2	TNF- inhibitors/NSAIDs/fostamatinib
Psoriasis(Ps)	IL23A	Risankizumab
Osteoporosis	RANKL/ESR1	Denosumab/Raloxifene and HRT

First large scale association studies on heart failure or DCM

On 50K CardioChip (2000 « cardiovascular » genes)

HSPB7 loci associated with all causes heart failure and DCM

First GWAS in DCM : DNA Pooling & discovery/replication design

Pooled DNA GWAS on DCM: Results

Limitation: limited power due to pool-genotyping strategy

Villard et al EHJ 2011

BAG3 sequencing in FDCM

• 6 mutations found in 168 DCM sequenced individuals

BAG3 also involved in familial DCM. Loss of autophagy function of BAG3 involved?

Exome-WAS in DCM

- Illumina Exome Chip (12v1.1) recapitulating human nonsynonymous SNP content. This exome array targets putatively functional variants but it provides a limited coverage of genome variability (< 10% of the variants with a MAF > 1%)
- 89659 polymorphic variants analysed
- Mixed linear Model statistics accounting for genetic relatedness (principal component) and gender applied on each populations (n=6) separately and combined by metaanalysis (FDR Q-value < 0.01)

Table 1. Number of DCM patients and controls

	DCM n (women)	CONTROLS n (women)
France	706 (149)	3677 (1394)
Germany	1161 (205)	1830 (959)
UK	96 (20)	89 (19)
USA1	119 (43)	189 (144)
Italy	83 (15)	92 (23)
USA2	631 (211)	1000 (506)
All	2796~(643)	6877 (3045)

Limitations:

- meta-analysis rather than discovery-replication design
- Partial coverage

Results for the 8 lead-SNPs in associated loci

		MAF	OR (95% CI)	P-value	Q-value	P-Het	Gene	AA chg
rs10	927875	A: 0.31 (0.26-0.37)	0.768 (0.71-0.83)	8.1x10 ⁻¹³	3.9x10 ⁻⁰⁸	0.83	HSPB7	-
rs38	329746	G: 0.23 (0.21-0.24)	0.810 (0.75-0.88)	3.4x10 ⁻⁰⁷	4.6x10 ⁻⁰³	0.039	TTN	I/V
rs13	3107325	A: 0.08 (0.07-0.12)	1.348 (1.20-1.52)	6.0x10 ⁻⁰⁷	6.0x10 ⁻⁰³	0.61	SLC39A8	A/T
rs47	12056	G: 0.35 (0.34-0.36)	1.191 (1.11-1.28)	5.1x10 ⁻⁰⁷	6.0x10 ⁻⁰³	0.53	MLIP	V/I
rs22	291569	A: 0.08 (0.05-0.09)	0.651 (0.57-0.74)	8.7x10 ⁻¹¹	2.8x10 ⁻⁰⁶	0.27	FLNC	R/Q
rs22	234962	G: 0.19 (0.15-0.22)	0.620 (0.57-0.68)	1.7x10 ⁻²⁵	1.6x10 ⁻²⁰	0.14	BAG3	C/R
rs38	303403	G: 0.30 (0.28-0.35)	1.276 (1.16-1.40)	2.9x10 ⁻⁰⁷	4.0x10 ⁻⁰³	0.29	ALPK3*	T/S
rs23	803510	A: 0.31 (0.29-0.34)	0.824 (0.77-0.89)	1.5x10 ⁻⁰⁷	2.3x10 ⁻⁰³	0.023	FHOD3	V/I
	25 -		-		BAG 3 23496	2		
g10(p)	15 -	HSPB7		FLNC				
0	10 -							
	5 -	rs848210 SLC39A8 MLIP ALPK3 rs2303510						
	。]							
		1 2 3	3 4 5 6	7 8	9 11	13	15 18	8 21

*recessive model

Esslinger U Plos One 2017

Esslinger et coll, PlosOne 2017

Positional candidate expression profils from GTEx RNA-Seq

Ventricle Atrial App. Sk. muscle

All but one are strongly expressed in striated muscle

Regional Plots after imputation (ExomeWAS)

Locus chr15 (ALPK3)

Locus chr7 (FLNC)

All leaders are Coding SNPs

4 are in a uniquegene restricted LD block (except ALPK3)

Regional plot after imputation at HSPB7/ZBTB17 locus

HSPB7 SNPs : the strongest associations

Esslinger et coll, PlosOne 2017

Comparative expression at the HSPB7 locus

HSPB7, the best regional candidate?

- Cardiac expression, but no eQTL
- Bibliographic evidencies

In Zebrafish: Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis (Mercer et al ; Dev Biol; 2018)

In Mice: Cardiac-specific loss of HSPB7 globally or specifically in cardiomyocytes resulted in embryonic lethality (Wu PNAS 2017)

In Mice: loss of HSPB7 in cardiomyocytes results in rapid heart failure and sudden death [...] filamin C, an interacting protein of HSPB7, is upregulated and aggregated in HSPB7 mutant cardiomyocytes (Liao; Plos Genet 2017)

Exome-WAS: summary

- Identification of 6 novel loci associated with sporadic DCM
- Confirmation for two previously reported associations with the HSPB7 locus and BAG3 gene.
- 7 of the DCM-associated genes are very plausible candidates from a pathogenic perspective.
- In addition, HSPB7, BAG3, TTN, FHOD3 and FLNC share functional roles suggesting that proteostasis plays a central role in DCM pathophysiology.

GWAS followed by Imputation : ongoing project

- Increased cases and controls numbers (vs GWAS1)
- Individual genotyping (vs GWAS1)
- Genome-Wide chip OmniExpress (vs Exome-WAS)
- Discovery/Replication design (vs Exome-WAS)

Standard GWAS on 2651 Cases / 4329 Controls on Whole Genome Chip and imputation with 1000Genomes (~10M SNPs); mixed linear model & adjustment on sex and 12 PCs

Manhattan plot: 9,152,884 SNPs

Garnier et coll in preparation

Chromosome

Cohorts description

Country	Case	Array/Centre	Controls	Array/Centre
France	676	Illumina HumanOmniexpress24	1085	Illumina HumanOmniexpress24
		713, 014 SNPs (CNG, GENMED)		713, 014 SNPs (CNG, GENMED)
England	112	Illumina HumanOmniExpressExome8-v1-2		
		964 193 (273 246 in exon) (C. Proust)		
Germany	1118	Illumina HumanOmniexpress24	3264	Illumina Omni2.5 & omniExpress
		713, 014 SNPs (CNG, GENMED)	(KORA)	587 050 genotyped SNPs
			-	17 842 083 imputed SNPs
	82	Illumina HumanOmniExpressExome8-v1-2		
		964 193 (273 246 in exon) (CNG, GENMED)		
USA	631	Illumina HumanOmniExpressExome8-v1_A		
		951 117 SNPs		
Italy	82	Illumina HumanOmniexpress24	92 (EHF)	Illumina HumanOmniexpress24
		713, 014 SNPs (CNG, GENMED)		713, 014 SNPs (CNG, GENMED)
Total	2641		4441	

Associated Loci : discovery and replication

Discovery Phase

		Loci			
Chromosome	КЗ	КЗ	К16	K22	
Discovery					
Allelic OR [95% CI]	1.36 [1.24-1.49]	1.28 [1.17-1.40]	1.35 [1.21-1.50]	1.32 [1.20-1.46]	
Р	8.7 10 ⁻¹¹	8.4 10 ⁻⁹	3.0 10 ⁻⁸	3.3 10 ⁻⁸	

			Lo	ci					
		Chromosome	К3	КЗ	K16	K22			
	Replication								
		AF	0.28	0.61	0.80	0.79			
Replication	Dutch study	Imputation r2	0.95	0.99	0.92	0.99			
Phase	145 cases 527 controls	Allelic OR [95% CI]	1.42 [0.99-2.04]	1.47 [1.07-2.03]	1.14 [0.76-1.72]	1.58 [1.08-2.31]			
		Р	0.030	7.7 10 ⁻³	0.258	8.2 10 ⁻³			
	German study 439 cases 439 controls	AF	0.22	0.71	0.84	0.82			
		Imputation r2							
		Allelic OR [95% CI]	1.36 [1.08-1.71]	1.19 [0.96-1.46]	1.13 [0.88-1.46]	1.26 [0.99-1.61]			
		Р	5.6 10 -3	0.046	0.172	0.031			

Combined Allelic OR [95% CI] 1.36 [1.25-1.48] 1.28 [1.18-1.38] 1.33 [1.21-1.45] P 5.9 10⁻¹³ 2.9 10⁻¹⁰ 6.3 10⁻¹⁰

GWAS3-association region K3

GWAS3-association region K22

Lead SNPs at K3 and K22: are they

 In "good" regional candidate genes (expression pattern, known function...)

Some are significantly expressed in Heart

Lead SNPs at K3 and K22: are they

- In "good" candidate genes (expression pattern, known function...)
 Some genes are significantly expressed in Heart
- Coding or in high LD (r2 > 0.8) with coding SNPs?

None of the LD SNPs are coding at K3 or K22

Lead SNPs at K3 and K22: are they

- In "good" candidate genes (expression pattern, known function...)
 Some genes are significantly expressed in Heart
- Coding or in high LD (r2 > 0.8) with coding SNPs?

None of the LD SNPs are coding at K3 or K22

• eSNPs or in high LD (r² > 0.8) with eSNPs?

Information to be extracted from Gtex database or other RNA seq effort on heart samples.

Lead SNPs at K3 and K22: are they

- In "good" candidate genes (expression pattern, known function...)
 Some genes are significantly expressed in Heart
- Coding or in high LD (r2 > 0.8) with coding SNPs?

None of the LD SNPs are coding at K3 or K22

• **eSNPs** or in high LD (r² > 0.8) with eSNPs?

Information to be extracted from Gtex database or other RNA seq effort on heart samples

• Involved in **chromatin interactions** between SNPs and positional candidate define by TAD (topology associated domains)?

Chromatine interactions in TAD delimited candidates

Objective: identify chromatin interaction and differencies at the allele specific level

Topol	logical domains
1	A SALA
10	
TCF-n	mediated contact domain
	CICE
	· · · · · · · · · · · · · · · · · · ·
,	RNAPI
,	RNAPI

3D chromatin architecture

iPS clones selection for Allele specific chromatin interactions

iPS project on HCM

12 salmples DNA **genotyped** (PCR +Sanger) for K3 and K22 locus

Clones 5 & 8 Cardiomyocytes (3 wk differentiation) for 4C and ChipSeq at Utrecht (Magdalena & Michal)

	rsW	rsZ
myH05	C/G	T/C
myH06	C/G	T/C
myH07	C/G	T/C
myH08	C/G	T/C

Acknowledgements

Fundings

SORBONNE UNIVERSITÉS

UMRS 1166 Inserm/Sorbonne Univ.

S Garnier	L Duboscq·
T Héry	Bidot
F Gary	C Perret
G Dilanian	C Proust
D Tregouët	F Cambien
P Charron	E Villard

Patients, controls

Contributors

Cardiogenics Eurogene Heart Failure PHRC-CMD CARDIGENE Inheritance EU-FP7 Insight-DCM F Asselberg C Hengstenberg K Stark E Arbustini T Wichter L Tavazzi B Maisch C Seidman

ASSISTANCE

PUBLIQUE

渝

T Cappola H Madeira A Waldenström S Blankenberg S Cook B Meder H Katus R Isnard M Komajda

\mu Inserm

Société Française de Cardiologie

Bundesministerium für Bildung und Forschung

HÔPITAUX

DE PARIS

